Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502131

RESUMO

Electro-optical sampling of Terahertz fields with ultrashort pulsed probes is a well-established approach for directly measuring the electric field of THz radiation. This technique usually relies on balanced detection to record the optical phase shift brought by THz-induced birefringence. The sensitivity of electro-optical sampling is, therefore, limited by the shot noise of the probe pulse, and improvements could be achieved using quantum metrology approaches using, e.g., NOON states for Heisenberg-limited phase estimation. We report on our experiments on THz electro-optical sampling using single-photon detectors and a weak squeezed vacuum field as the optical probe. Our approach achieves field sensitivity limited by the probe state statistical properties using phase-locked single-photon detectors and paves the way for further studies targeting quantum-enhanced THz sensing.


Assuntos
Fótons , Radiação Terahertz , Desenho de Equipamento , Eletricidade
2.
ACS Photonics ; 9(10): 3245-3252, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281330

RESUMO

The polarization state of light is a key parameter in many imaging systems. For example, it can image mechanical stress and other physical properties that are not seen with conventional imaging and can also play a central role in quantum sensing. However, polarization is more difficult to image, and polarimetry typically involves several independent measurements with moving parts in the measurement device. Metasurfaces with interleaved designs have demonstrated sensitivity to either linear or circular/elliptical polarization states. Here, we present an all-dielectric meta-polarimeter for direct measurement of any arbitrary polarization state from a single-unit-cell design. By engineering a completely asymmetric design, we obtained a metasurface that can excite eigenmodes of the nanoresonators, thus displaying a unique diffraction pattern for not only any linear polarization state but all elliptical polarization states (and handedness) as well. The unique diffraction patterns are quantified into Stokes parameters with a resolution of 5° and with a polarization state fidelity of up to 99 ± 1%. This holds promise for applications in polarization imaging and quantum state tomography.

3.
Sci Adv ; 6(13): eaay5195, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258399

RESUMO

Quantum-enhanced optical systems operating within the 2- to 2.5-µm spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550-nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-µm mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications.

4.
Phys Rev Lett ; 109(18): 180501, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215260

RESUMO

An important task for quantum-information processing is optimal discrimination between two nonorthogonal quantum states, which until now has been realized only optically. Here, we present and compare experimental realizations of optimal quantum measurements for distinguishing between two nonorthogonal quantum states encoded in a single (14)N nuclear spin at a nitrogen-vacancy defect in diamond. Implemented measurement schemes are the minimum-error measurement (known as Helstrom measurement), unambiguous state discrimination using a standard projective measurement, and optimal unambiguous state discrimination [known as Ivanovic-Dieks-Peres (IDP) measurement], which utilizes a three-dimensional Hilbert space. This allows us to benchmark the IDP measurement against the standard projective measurements. Measurement efficiencies are found to be above 80% for all schemes and reach a value of 90% for the IDP measurement.

5.
J R Soc Interface ; 8(60): 942-51, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21247948

RESUMO

We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.


Assuntos
Biologia Celular/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Modelos Teóricos , Microscopia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...